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S U M M A R Y  

The resolution of spectral frequencies in NMR data obtained from discrete Fourier transformation (DFT) 
along D constant-time dimensions can be improved significantly through extrapolation of the D-dimensional 
free induction decay (FID) by multidimensional Bayesian analysis. Starting from Bayesian probability 
theory for parameter estimation and model detection of one-dimensional time-domain data [Bretthorst, 
(1990) J. Magn. Reson., 88, 533-551; 552-570; 571 595], a theory for the D-dimensional case has been 
developed and implemented in an algorithm called BAMBAM (BAyesian Model Building Algorithm in 
Multidimensions). BAMBAM finds the most probable sinusoidal model to account for the systematic 
portion of any D-dimensional stationary FID. According to the parameters estimated by the algorithm, the 
FID is extrapolated in D dimensions prior to apodization and Fourier transformation. Multidimensional 
Bayesian analysis allows for the detection of signals not resolved by the DFT alone or even by sequential 
one-dimensional extrapolation from mirror-image linear prediction prior to the DFT. The procedure has 
been tested with a theoretical two-dimensional dataset and with four-dimensional HN(CO)CAHA (Kay et 
al. (1992) J. Magn. Reson., 98, 443-450) data from a small protein (8 kDa) where BAMBAM was applied to 
the 13C~ and H~ constant-time dimensions. 

I N T R O D U C T I O N  

The estimation of  spectral frequency, amplitude, phase and decay rate parameters f rom N M R  
time-domain data is accomplished conventionally by examination of  the absorption spectrum of 
the discrete Fourier t ransform (DFT) of the data. The frequency resolution obtained f rom the 

DFT,  however, is limited when acquisition times are short, as is the case for the indirectly detected 
dimensions of  3D and 4D N M R  experiments. In many  4D experiments, for example, as few as 
eight complex points may be acquired along one or more of  the indirectly detected dimensions. 

*To whom correspondence should be addressed. 
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TABLE 1 
RECEIVER TIME AND PHASE VALUES FOR VARIOUS METHODS OF ACQUISITION a 

Method of  acquisition Position (x) Time (t) Phase (~) 

Redfield b 1 0 x (0) 
2 At y (~/2) 

3 2At x (0) 
4 3At y (~/2) 

TPPV 1 0 x (0) 
2 At y (n/2) 
3 2At - x  (~) 
4 3At - y  (3n/2) 

States d 1 0 x (0) 
2 0 y (~/2) 
3 At x (0) 
4 At y (~/2) 

States-TPPI d 1 0 x (0) 
2 0 y (r~/2) 
3 At - x  (n) 
4 At - y  (3g/2) 

a For each point Yl in the D-dimensional data matrix, there is a vector Xi = [x~j,x~2,...XiD ] which specifies the position of  the 
point along dimension d = [1,2,...D] of the matrix. The vector X~ uniquely specifies the time and phase of  y~ along each 
dimension according to the method of  acquisition displayed in the table. 

b Redfield and Kunz, 1975. 
c Bodenhausen et al., 1980. 
a States et al., 1982. 

Extrapolation of the FID by linear prediction (Barkhuijsen et al., 1985) prior to the Fourier 
transform (Gesmar and Led, 1989; Zhu and Bax, 1990; Led and Gesmar, 1991; Kay et al., 1992) 
has been one approach to increasing the resolution of highly truncated NMR data (see Stephen- 
son, 1988; Gesmar et al., 1990 for reviews). Although computationally stable and relatively fast, 
1D linear prediction is sensitive to noise and is reliable only if the number of frequency compo- 
nents is less than one quarter of the number of available data points (Kumaresan and Tufts, 
1982). Even with the use of constant-time experiments (Bax et al., 1979; Kessler et al., 1984) to 
increase the number of available data points through mirror-image time projection (Zhu and Bax, 
1990), 1D linear prediction of highly truncated data can produce lineshape distortions and 
artifacts. A recently reported algorithm for simultaneous 2D linear prediction (Zhu and Bax, 
1992) reduces these problems but only at a large computational expense. 

Recently, Bayesian probability theory has been used to estimate relevant spectral information 
from 1D NMR data (Bretthorst, 1990a,b,c) with much greater resolution and accuracy than by 

Abbreviations: NMR,  nuclear magnetic resonance; 1D, 2D, etc., one-dimensional, etc; BAMBAM, Bayesian model- 
building algorithm in multidimensions; DFT, discrete Fourier transform; FID, free induction decay. 
Software for carrying out multidimensional Bayesian analysis of  constant-time data is available from the National 
Magnetic Resonance Facility at Madison, 420 Henry Mall, Madison, WI 53706, U.S.A. 
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conventional Fourier transform processing (Kotyk et al., 1992). Through assigning probabilities 
to questions relating to parameter estimation and model selection, Bayesian analysis can con- 
struct the most probable mathematical model that is consistent with the NMR data and any 
known prior information. NMR data acquired with constant-time acquisition periods are partic- 
ularly amenable to Bayesian analysis because the mathematical models describing such data need 
not include decay terms. We develop here an extension of 1D NMR parameter estimation by 
Bayesian analysis to the D-dimensional case. The theory is implemented in an algorithm for 
extrapolating D-dimensional stationary NMR data which, when used in conjunction with the 
Fourier transform, can significantly increase the frequency resolution obtainable from NMR 
experiments containing D constant-time dimensions. Preliminary results of this study have been 
presented elsewhere (Chylla and Markley, 1993). 

THEORY 

Bayesian probability theory as applied to the estimation of spectral parameters in 1D NMR 
data (Bretthorst, 1990a,b,c) has been extended here to D dimensions. Bretthorst's notation has 
been retained insofar as appropriate. 

Consider a D-dimensional, rectangular matrix of time-domain NMR data in which the number 
of data points along dimensions d ---- [1, 2 . . . .  , D] is defined by nd= [nl, n2 . . . . .  nD] respectively. 
The total number of data points, N, is given by 

D 

N = H nd (1) 
d = l  

For convenience, the D-dimensional data matrix can be expressed as a 1D vector of N data points 
Y -= [Y~, Y2 ..... YN], where the position, time and phase in D-dimensional space of each data point 
Yi is defined by matrices X, T, and �9 respectively: 

-Xl l  X21 . . .  XNI ] [ tll t21 ... tNl 
X ~-- XI2 X22 " ' "  XN2 T -  t12 t22 -.. tN2 

LXlD x2D ..- XNDJ t,D tm ... tND 

F(DI, (D2, ... 
~_=/(D,2 (D22 ... (DN2 / 

L(D'o (D2o ' (D o/ 

According to this notation, Xid , tid and (Did define, respectively, the position, time and phase of Yi 
along dimension d. These values are known parameters determined by the method of quadrature 
along d. Table 1 displays values for x, t and (D for several methods of quadrature assuming 
uniform data sampling. 

A model describing the dataset may assume that the data can be separated into a systematic 
portion (signal) and a random portion (noise), both of which are functions of T and ~: 

Yi (Ti,Oi) = f (Ti,~i) + e(Ti,~i), 1 ~ i ~ N (2) 

The systematic portion can be modeled as a linear combination of J signal functions: 
J 

f (T,~) = ~ BjUj(T,~,| 
j = l  

(3) 
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where Uj(T,O,Oj) is the j th signal function, Bj is the amplitude of the j th  signal function, and Oj 
represents the relevant nonlinear parameters (frequency, phase and decay rate) associated with 
Uj. The signal function Uj, for the case of D-dimensional time-domain N M R  data, is a D- 
dimensional decaying sinusoid: 

D 

U s (Ti,Oi,Oj) = l"I COS(%dtia + ~id + 0Sd) e-~jdtid, 1 <-- i ~ N; 1 --< j --< J (4) 
d = l  

where Us(Ti,Oi,Os) is the value of thejth signal function at data point i, tid and Oid are the respective 
time and phase of the ith data point along dimension d, and O)Sd, 0Sd, and %d are the respective 
angular frequencies, phases and decay rates of thej th signal function along dimension d. For the 
special case of NMR data in which all D dimensions have been acquired by using a constant-time 
evolution period, the signal function U s can be modeled by a stationary sinusoid without decay 
terms: 

D 

Uj(Ti,Oi,Oj) = l-I COS(o)jdtia + Oid + 0Sd), 1 --< i <-- N; 1 - - j  --< J (5) 
d = l  

It is important to note the very different natures of r and 0Sd. Although both represent phase 
terms in Eq. 5, ~id is a known acquisition term determined by the method of quadrature; in 
contrast, 0jd is an unknown parameter to be estimated from the data. To minimize the number of 
unknown, nonlinear parameters, 0 can be expressed as an amplitude (linear) rather than as a 
phase (nonlinear) parameter. A sinusoid of amplitude B and phase ~ is equivalent to the linear 

rt 
combination of two sinusoids differing in phase by 2: 

B cos(o) t + 0) = AI cos(o) t) + A 2 cos(o) t + n 5) (6) 

Application of this one-dimensional trigonometric identity to the D-dimensional Eq. 3 yields the 
following expression for f(T,O) 

J K 

fiT,O) = ]~ E AjkVjk (T,O,W s) (7) 
j = l  k = l  

where K = 2 D is the number of amplitudes per sinusoid, ASk is the kth amplitude of the flh 
sinusoid, W s =- [o)jl, %2 . . . . .  %D], and Vsk(T,q~,Ws), the kth signal function of the j th sinusoid, is 
given by 

D 

Vjk(Ti,Oi,Wj) = I-I  COS(%dtid + ~id 4- It/kd), 1 -< i -< N; 1 -< j -< J; 1 --< k -< K (8) 
d = l  

[,w\ 
~kd = [ 2 ) [ ( ( k -  1) / (2d-l)) % 2], 1 --< d - -  < D; 1 - < k -  < K (9) 

The operators / and % represent the integer division and integer modulus operators respectively. 
Table 2 displays values of qJka for the cases o fD  = 1, 2, and 3. The parameters B (Eq. 3) and ~ (Eq. 
5) can be calculated from A (Eq. 7) according to 

B j = ~ k = l  Ajk2, 1 --< j --< J (10) 



TABLE 2 
KNOWN VALUES FOR Wkd AS A FUNCTION OF k AND d 
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Dimensions ktJkd a 

d k = l  k = 2  

D =  l 1 0 n/2 

k = l  k = 2  k = 3  

D = 2 1 0 n/2 0 
2 0 0 n/2 

D=3 

k=4 
rd2 
~/2 

k = l  k = 2  k = 3  k = 4  k = 5  k = 6  k = 7  k = 8  

1 0 hi2 0 hi2 0 hi2 0 hi2 

2 0 0 hi2 hi2 0 0 n/2 n/2 

3 0 0 0 0 n/2 n/2 n/2 n/2 

"There are k = [1, 2,...K = 2 ~ phase terms along each dimension. Each hUkd corresponds to the phase term appearing in 
dimension d of the kth basis function of Eq. 8. 

Ojd=arctan(AJ-~i~) ,z=(l+/~ 2 d - l ) ; 1 - < j - < J ; 1 - < d -  < D  (11) 

It is convenient to express the jk subscripts in terms of a single subscript, m = 1 ... M, where 
M - JK and m takes the M possible combinations ofjk.  With this change in notation, A m = Ajk , 
V m is given by 

V~(T,O,W i) = Vjk (T,C~,Wi), m = (k - 1)J + j (12) 

and f(T,~) is given by 

M 

f(T,O) = • nmVm(T,~,Wj), j = [ ( m -  1 ) / J ]  + 1 (13) 
m = l  

Equation 13 is a model that is sufficient to describe the systematic portion of  all D-dimensional 
N M R  data that can be described by a sum of  stationary sinusoids. 

Given a specified set o f ( J  + 1) possible models and S = {fo,fl,f2 ..... fj}, Bayesian statistics can 
determine quantitatively which model f~ is the most probable given the data and any known prior 
information. This probability can be expressed as P(D[f,O,I), the global likelihood of  the data D, 
given the form of the data f, the nonlinear parameters O associated with f, and any prior 
information I. Bretthorst (1990b) derived an expression for P(DIf, O,I) for any dataset that satis- 
fies Eqs. 2 and 3 and whose noise carries a finite total power: 

P(D I f,O,I) oc F F 2 (14) 

In the above equation, F(x) is the gamma function, M is the number of  signal functions, N is the 
total number of  data points, d 2 is the mean-square data value 
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N 

~'~ = 1 i ='~lyi2 

h 2 is the mean-square projection of the data unto a set of orthonormal basis functions H, 

(15) 

N 
h m = ,~_~ yiHm(Ti,qbi), 1 -< m ~ M (17) 

i=l 

Hm(Ti,~/~i ) 1 = ~ l=le~ Vl(Ti,~i), 1 -< m -< M (18) 

eml is the ruth component of the / th  eigenvector, and k m is the ruth eigenvalue of the interaction 
matrix Glm defined by 

N 
glm ~--" E Vl(Ti,tI)i)Vm(Ti,(I)i), glm ~ Glm, 1 -< 1 -< M, 1 -< m -< M (19) 

i=l 

The global likelihood of the data P(Dlfj,Oj,I) depends upon the number of sinusoids J in the 
model (M = 2 D J) and the values of the nonlinear parameters Oj. For the special case of NMR 
data acquired with constant-time evolution periods, the nonlinear parameters are exclusively 
frequency parameters (Oj = Wj). P(DIf, O,I) can be evaluated independent of the linear parameters 
A m (Eq. 13). A m a r e  'nuisance parameters' (Bretthorst, 1990a) which can be removed from the 
expression for P(DIf, O,I) by integration over all possible values of A m. The values of Am, which 
maximize P(DJf, O,I) for a given set of nonlinear parameters, are given by 

hi elm 
A m ------- - -  m - M (20) 

1= 1 ~ ' - 1 ,  1 <  < 

Equation 13 can be used not only to estimate the nonlinear parameters that maximize 
P(DIfj,| but also to estimate the number of signals present in the data. A dataset can be said 
to contain evidence for J signals if 

P(DIfj+ ,,O,I) P(DIfj,O,I) 
<1 and >1 ,  

a(D[fj,O,I) a(DIfj_ ~,O,I) 

where fj refers to a model containing J signals. In view of the data and any prior information, 
application of Bayesian probability theory selects the simplest model that still accurately accounts 
for the systematic portion of the data. 

Bayesian probability theory indicates the conditions under which the Fourier transform pro- 
vides an accurate estimation of the frequencies prese__nt in NMR data. For a model with a fixed 
number of sinusoids, P(D[fj,O,I) increases as h 2 increases. For J = 1 (M = 2 D) and 
O = W = [~01,tah ..... O)D], it can be shown that 

(N)Dm~= ITm2(W), ~-=  M = 2  D 
= 

,1 Tm(W) -- i =~1 yi I COS(O)dtid + 0id 

(21) 

(22) 

M 
1 m~b ~ (16) 
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m 

Equation 22 is simply the D-dimensional Fourier transform of the data and the quantity h: is 
proportional to the power spectrum evaluated at W = [0~,r ..... COD]. For a model consisting of 
a single stationary frequency, the position of Tm(W)max (maximum of the Fourier transform 
power spectrum) represents the values of W that are most 'probable' as expressed by the quantity 
P(DIfj,O,I). 

ALGORITHM 

The preceding section has outlined a theory for evaluating the relative probability of different 
D-dimensional sinusoidal models of NMR data. This section applies that theory in an algorithm 
designed to construct the most probable sinusoidal model for a D-dimensional N M R  dataset 
acquired under conditions where decay of the time-domain signals is negligible (e.g., constant- 
time evolution periods). We have dubbed the algorithm BAMBAM (BAyesian Model Building 
Algorithm in Multidimensions). BAMBAM will be explained through an example: Bayesian 
analysis of a synthetic 2D (8 • 8 complex) dataset with added random noise. 

Consider a synthetic 2D matrix of N M R  data Y, where eight complex points are 'acquired' 
along each dimension by using the procedure of States et al. (1982) for quadrature detection. This 
dataset can also be viewed as a linear array of (N = (2 x 8) 2 = 256) time-domain data points, 
Y = [Y~,Y2,Y3 . . . . .  YN]. The time and phase along dimension d for point Yi are given according to 
the States quadrature scheme outlined in Table 1. The time-domain dataset Y contains 15 sinu- 
soids whose amplitudes and frequencies along each dimension are tabulated in Table 3. The 
phases and decay rates of the sinusoids are all zero. The frequencies in Table 3 are expressed in 
dimensionless units -1 ~ f ~ 1, which represent the angular frequency range - n  -< co ~ n. Y was 
constructed by calculating the time-domain data points according to the theoretical parameters 
in Table 3 and then by adding Gaussian noise with a mean of zero and a standard deviation of 
unity to each of the N data points. 

BAMBAM applies a sequential strategy in order to find the most probable model for a given 
dataset. BAMBAM first calculates the quantity P(D[fj,O,I) for a model containing no sinusoids 
(J = 0, M = 1), i.e. a model which is simply a constant. It then compares the value of P(D[fj = 0, 
| to the posterior probability of a model containing one sinusoid (J = 1, 
M = J x 2  D = 1 •  2 = 4). I f  

P (D[fj = ~,O,I) 
>1 ,  

P (Dlfj = o,O,I) 

then the most probable model contains at least one sinusoid; otherwise, BAMBAM 'concludes' 
that the most probable model is simply a constant and the algorithm terminates. In the former 
case, BAMBAM then calculates P(D[fj,O,I) for a model containing two sinusoids (J = 2, 
M = 2 x 2 2 = 8). BAMBAM repeats these steps until the termination criteria are met, namely that 

P(DIfj + ~,0,I) P(DIfj,O,I) 
< 1 and 

P(DIfj, O,I) P(DIfj -~, O,I) 
>1.  

With the synthetic dataset Y as an example, the following cases detail how P(D[fj,O,I) is calculat- 
ed for J = 0, 1, 2 . . . .  Z. 
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Case ( J  = O) 

For a model containing no sinusoids, the systematic portion of  the data is equivalent to a 
constant f (T,~) = A (Eq. 13), and the b__asis function Vm(Ti,~i,| (Eqs. 8 and 12) is equal to one. 
For this minimal model, the statistic h 2 is equivalent to the square of  the sum of the data 

= Yi (Eqs. 16 and 17). The necessary quantities, N=256 ,  M = 1, h --7, and d ---5 (calculated 
i = l  

according to Eq. 15), are known so that P(Dlfj=0,| can be calculated according to Eq. 14. 
Because of  the large absolute values of  the exponents in Eq. 14, P(DIfj = 0,19,1) is more convenient- 
ly expressed in logarithmic form 

ln[P(D[ f,19,I)] oc I~F(~)] + ln[F(-~)]- (M) 1~--~ ]- [ -~1 ln{ N~2M~] (23) 
Case ( J = 1) 

The next simplest model is one consisting of  a single sinusoid (J = 1, M = 4). Equation 21 
indicates that the most probable single frequency describing a dataset is given by the position of  
the maximum of the Fourier transform power spectrum (Tm(W) . . . .  Eq. 22). The Tm(W)max for 

TABLE 3 

COMPARISON BETWEEN THE THEORETICAL VALUES OF SIGNAL PARAMETERS AND THE VALUES 

DERIVED FROM BAYESIAN ESTIMATES OF A SYNTHETIC TWO-DIMENSIONAL DATASET WITH ADD- 

ED RANDOM NOISE a 

Peak Theoretical values Bayesian estimates 

A ~1 m2 A m~ m2 

a 3.00 0.4000 -0.7000 3.10 0.4053 -0.6875 

b 8.00 -0.6000 -0.6000 7.70 -0.6067 -0.6007 

c 5.00 -0.1000 -0.4000 4.95 -0.1321 -0.4026 

d 4.50 -0.4000 -0.3000 4.72 -0.3818 -0.3229 

e 5.00 0.2000 -0.3000 4.81 0.2035 -0.2822 

f 6.00 0.0000 0.0000 6.00 -0.0089 -0.0051 

g 2.00 -0.9500 0.0000 2.13 -0.9507 0.0042 

h 4.00 0.3000 0.1000 4.70 0.3297 0.1158 

i 4.00 0.4000 0.1500 4.65 0.3768 0.1441 

j 8.00 -0.7000 0.3000 8.22 -0.7014 0.3074 

k 4.00 -0.1000 0.4000 4.04 -0.0954 0.4011 

1 6.00 -0.6000 0.4000 6.68 -0.6081 0.4218 

m 6.00 -0.8000 0.5000 6.56 -0.7799 0.4883 

n 5.00 -0.6000 0.6000 5.84 -0.6025 0.5826 

o 3.50 0.4000 0.8000 3.51 0.4040 0.8135 

a The theoretical time-domain dataset is an 8 x 8 complex array of data points (N = (2 x 8) 2 = 256) consisting of 15 

sinusoids (~o )  computed using the corresponding frequency and amplitude parameters listed in the table. The decay rate 

and phase along dimensions one and two of each sinusoid are zero. Random noise with a standard deviation of unity was 

added to each data point prior to Bayesian analysis. The frequencies coj and ~ are displayed in the Nyquist interval 
-1 -< f-< 1 representing the angular frequency range - n  -< o~ -< n. 
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dataset Y occurs at the frequency coordinate [(01 = -0.663n, (02 = 0.313n]. A model consisting of 
a single 2D sinusoid at this coordinate [(0,(02] can be constructed by Eqs. 7-9, 12 and 13: 

fj=l(Ti,(I)i) -- A 1 cos((01til + i~il)COS(0)2ti2 + t~i2) -t- A 2 cos((01til -I- ~)il d- ~)cos((02ti2 -t- ~i2) -t- 
(24) 

A 3. cos((01til + ~il)COS((02ti2 -I- ~i2 -t- ~) q- A 4 cos((01til + ~il -1- ~2)c0S((02ti2 -1 ~i2 1- 5) 

With the following shorthand: 

Cd ~ COS((0dtid + ~id) (25) 

Sd ~ sin((0dtid + l~id) ~-" COS((0dtid + ~id q- 2 ) (26) 

fJ = 1 can be rewritten as 

t~ = l(Ti,(I)i) = A I C I C  2 -t- A2S1C 2 -I- A3C1S 2 -t- A4S1S 2 (27) 

The interaction matrix for the single sinusoidal model (Eq. 19) is given by 

G = 

N N N N 
E C12C22 E C151C22 E CIS1C2 2 E CISIC2S2 

i=1 i=1 i=l i=l 

N N N N 
E C1SIC22 E 512c22 E c i s i c 2 s 2  E s12c2s2 
i=1 i=1 i=l i=1 

N N N N 
E ElSiE22 E ClSlC2S2 E C12522 E ClSlS22 

i=l i=l i=l i=l 

N N N N 
Z CIS1C252 E 512c252 E c151s22 E s12822 

i=l i=1 i=l i=l 

N 

o N _ 

4 

0 0 

0 0 

0 0 

0 0 

N 

N 

(28) 

The eigenvectors and eigenvalues from the diagonal matrix G were used with the values [0)1,(02] 

to construct the orthogonal basis functions, n m = 14(Ti,~i) (Eq. 18). The projections of the data 
onto the orthogonal basis functions h m = 14 and the mean-square value of  this projection h 2 were 
calculated according to Eqs. 17 and 16, respectively. 

For  a fixed value of M, h 2 is a sufficient statistic to determine the values of the nonlinear 
parameters, (01 and (02, that represent the most probable frequencies contained in the data. The 
Tm(W)max at [(01 = -0.663n, (02 = 0.313~] was used as an estimate for the frequencies that maxi- 
mize h 2. The precision of  this estimate was limited, however, by the size of  the frequency grid over 
which the FT was performed. A more precise estimate was obtained from a two-parameter 
nonlinear maximization algorithm using h 2 as the criterion for maximization. The nonlinear max- 
imization yielded a n  h2max at the frequency coordinate [(01 = -0.673n, 0) 2 = 0.3077]. The amplitude 
values A m = 14 consistent with this model were calculated from h m = 14 according to Eq. 20. 

The values of  h 2 . . . .  d 2, M = 4 and N = 256 were used to calculate ln[P(D[fj = ,O,I)], the 
logarithm of  the posterior probability of  the data, given a model containing a single sinusoid. A 
function A(J), defined as 
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Fig. 1. Plot of the natural logarithm of the change in posterior probability of model J (A(J)) vs. J. The expression for A(J) 
is given by Eq. 29 in the text. The sign of A(J) indicates the relative probability of model fj compared to model fj_~, positive 
if fj is more probable than fJ-1 and negative if fs is less probable than fJ-v 

A(J) = ln[P(Dlfj,O,I) - ln[P(Dlfj_ l,O,I) (29) 

indicates whether and to what extent a model containing J sinusoids is more or less probable than 
a model containing (J - l) sinusoids. For  the synthetic dataset Y, A(1) ~ 24. This statistic indi- 
cates that the model containing a single sinusoid is e 24 times more probable than the simple 
constant model in accounting for the systematic portion of Y. A(1) is thus strong evidence that the 
most probable model of  Y contains at least one sinusoid. 

Case ( J = 2) 

For a model containing J = 2 sinusoids, there are two sets of  2D frequency coordinates, 

[O~ll,C01z], [0)21,C022] and M = 8 amplitudes 

fJ : 2(Ti,(I)i) = A~CnCI2  + A2S11C12 + A3CIISI2 + A4S11S12 + 

A5C21C22 + A6S21Czz + A7C21822 + A8S21S22 (30) 

where 

Cjd ~ COS(%dtid + r (31) 

-= sin (%atia + r = COS(C%tid + ~id + 2 ) (32) 

The interaction matrix G for fj = 2 can be simplified to (terms below the diagonal are omitted 
because the matrix is symmetrical): 
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G = 

N 7 o 

N 

4 

0 0 

0 0 

N N N N 

E C 1 IC12C21C22 E C11C12S21C22 E C11C12C21S22 E CllC12S21S22 
i=l i=l i=l i=l 

N N N N 

E S1 IC12C21C22 Z S11C12S21C22 E 511C12C21S22 E s11c12s21s22 
i=l i=l i=l i=l 

N N 

N 0 E C11S12C21C22 E Cl1S12S21C22 
4 i=l i=l 

N N 

E C11512C21S22 E Cl1St2S21822 
i=l i=l 

N N N N 

N E s11s12c21c22 E $11s12s21c22 E s11s12c21s22 Z s11s12s21s22 
4 i=l i=l i=l i=l 

N 
0 

4 

N 

4 

0 0 

0 0 

N 
0 

N 

4 

(33) 

For  a general model, the summations shown in Eq. 33 cannot be evaluated analytically; the 

summations are dependent upon the specific values of  [(011,(0~2] and [(02~,(022]. 
An estimate for [(01L,(0~z] was obtained from the fj = 1 model, and an estimate for [(021,(022] was 

generated from the residual R(2) between the original dataset and fj = 1. For  a model consisting of  

J frequencies, the residual R(J) is defined as 

R(J)  = Y - fJ-1 (34)  

The estimate [(021 = -0.606n, (022 = -0.596n] was obtained from the Tm(W)max of  the residual R(2). 
A starting estimate for the nonlinear parameters comprising the most probable two-sinus- 
oid model was thus given by the pair of  coordinates [(01~ = -0.673x, (012 = -0.307n] and 
[(021 = -0.606n, (022 = -0.596x]. The eigenvectors and eigenvalues derived from G were used to 
calculate values for Hm= 1-8, hm= 1-8 and h 2 as done previously (Eqs. 16-18). The quantity 
h2max w a s  found by a four-parameter nonlinear maximization of [(0H,(012] and 
[~,(02z], which yielded [(011 = -0.674n, (012 = -0.309n] and [o~ = -0.598n, (022 = -0.587n]. Val- 
ues of A m = I 8 consistent with this model were calculated according to Eq. 20. The value A(2) (Eq. 
29) indicated that the model consisting of two sinusoids was e ~9 times more probable than the 
model consisting of  a single sinusoid. 

Case (J  = Z )  
BAMBAM determines the most probable values for the nonlinear parameters 

([(01D(012],[(02~,(022] . . . .  [(0z~,(0z2]) for the case J = Z in the same manner as the case J = 2. Each 
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model consists of Z 2D frequency coordinates which are used to define a basis set of M = 4Z 
amplitudes and 4Z basis functions (Eqs. 7-9). The Tm(W)max  value of the residual R(Z) is used to 
obtain a starting frequency estimate for [O~z~,O~z2], and the frequency estimates from fj = ~-z yield 
starting values for ([o~l~,o~2],[ohl,o~zz] . . . .  [O~(z-1)l,CO(z-~)2]). From these nonlinear parameters, the 
interaction matrix G can be calculated numerically, and its eigenvectors and eigenvalUes deter- 
mine Hm = ~-M, hm = l-M, and h 2 according to Eqs. 16-18. The search for h2max is accomplished 
through a 2Z nonlinear parameter maximization (see Appendix: Nonlinear Maximization of h2). 
The values for A m =1-M consistent with the most probable nonlinear parameters (the frequencies 
[coH,o~12],[Ohl,Ohz], �9 ..[COz~,~z2] which maximize h 2) are calculated according to Eq. 20. The values 
obtained for ([0311,(1)12],[0)21,0)22] . . . .  [O~ZI , ( I )z2])  and A m = I-M define the new model fj  = z according to 
Eqs. 7-9. The quantityA(Z) then determines the relative probabilities of models fz and fz + 1. 

RESULTS 

Synthetic dataset 
The most probable model of dataset Y found by Bayesian analysis is presented in Table 3 next 

to the actual values that define the systematic portion of Y. The algorithm accurately predicted 
the number of sinusoids contained within the data. Figure 1 displays a plot of A(J) vs. J for 
J = 1-16. Bayesian statistics indicated that the 15-sinusoid model was e 3~ times more probable 
than the 14-sinusoid model and e 3"7 times more probable than the 16-sinusoid model. Although 
the 16-sinusoid model 'fits' the data better, the better fit was statistically unjustified by the greater 
number of basis functions required by the model. The inequality A(16) < 0 (see Fig. 1) was the 
hallmark of the greater likelihood of the 15- vs. 16-sinusoid model. 

In order to estimate the precision and the accuracy of each of the Bayesian-derived parameters 
in Table 3, identical analyses were performed upon a total of eight datasets. Each dataset was 
identical to dataset Y in its systematic component (signals a-o) but different in its random (noise) 
component. The accuracy and precision determined from the Bayesian estimates of the eight 
datasets are displayed in Table 4. The terms 'precision' and 'accuracy' as used here are defined as 
the root-mean-square (rms) deviation of each estimate from the mean value (of the eight datasets) 
and the 'true' value (left-hand portion of Table 3) respectively. The greater accuracy of the 
frequency vs. the amplitude estimates is not unexpected because the frequencies are much better 
determined by the data than are the amplitudes (Bretthorst, 1990c). The results of Tables 3 and 
4 show clearly that, even though a zero-filled Fourier transform of dataset yields a frequency 

2n 
resolution of(4 x 8 -- 0.0625~), Bayesian analysis was able to estimate the frequencies contained in 

dataset Y within an average accuracy of 0.013~ <-co-< 0.018n. Clearly, the actual frequency 
information contained in a highly-truncated dataset is much greater than is conventionally 
obtained from a zero-filled Fourier transform. 

A graphical comparison of Bayesian analysis with the zero-filled Fourier transform (ZFT) and 
with the ZFT enhanced by 1D mirror-image linear prediction is shown in Fig. 2. Contour plots 
of the real frequency-domain spectrum of a noise-free (black contours, 64 x 64 complex) and a 
truncated (red contours, 8 x 8 complex) noise-added version of the same dataset are displayed in 
the figure. The noise-added, truncated dataset was processed by three different methods: (A) 
apodization and zero-filling, followed by Fourier transformation; (B) extrapolation of each 
dimension by separate 1D linear prediction prior to apodization, zero-filling and Fourier trans- 
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formation; and (C) extrapolation of both dimensions simultaneously by 2D Bayesian analysis 
prior to apodization, zero-filling and Fourier transformation (see legend to Fig. 2 for additional 
details). Processing of dataset Y with the simple zero-filled Fourier transform (Fig. 2A) resolved 
only 9 of the 15 actual frequencies contained within the data. Moreover, severe overlap distorted 
the positions of many of the frequencies and produced a large amplitude at (o~1 ~ - ~, ~o2 = 0) 
where no frequency actually exists. Extrapolation of the time-domain data by linear prediction 
(Fig. 2B) significantly improved the quality of the spectrum but still resolved only 12 of the 15 
frequencies contained within the data. Extrapolation of the time-domain data by Bayesian analy- 
sis (Fig. 2C) prior to FT produced a real frequency-domain spectrum with all the frequencies of 
sinusoids a-o fully resolved within a 4% error. The amplitudes of signals h and i were only 
partially resolved by Bayesian analysis. They tended to be systematically overestimated in each of 
the eight datasets. This can be seen from the high accuracy-to-precision ratio for these two signals 
(Table 4). 

Analysis of experimental data 
To illustrate the applicability of Bayesian analysis to the processing of constant-time data in 3D 

and 4D experimental datasets, B A M B A M  was used to extrapolate the 2D H~C ~ planes from a 4D 

TABLE 4 

THE CALCULATED PRECISION AND ACCURACY DERIVED FROM BAYESIAN ESTIMATES OF A SERIES 

OF EIGHT SYNTHETIC TWO-DIMENSIONAL DATASETS WITH ADDED RANDOM NOISE a 

Peak Accuracy Precision 

A ol o2 A ol oh 

a 0.13 0.0076 0.0133 0.13 0.0067 0.0086 

b 0.15 0.0053 0.0056 0.11 0.0053 0.0054 

c 0.39 0.0284 0.0059 0.31 0.0085 0.0059 

d 0.30 0.0307 0.0147 0.24 0.0166 0.0066 

e 0.17 0.0069 0.0169 0.12 0.0068 0.0038 

f 0.16 0.0124 0.0077 0.14 0.0124 0.0040 

g 0.14 0.0151 0.0088 0.12 0.0119 0.0035 

h 1.87 0.0355 0.0192 1.24 0.0265 0.0187 

i 1.60 0.0259 0.0118 0.80 0.0062 0.0054 

j 0.45 0.0039 0.0105 0.28 0.0029 0.0057 

k 0.16 0.0046 0.0042 0.16 0.0046 0.004 1 

1 0.89 0.0116 0.0127 0.54 0.0079 0.0080 

m 0.49 0.0131 0.0093 0.29 0.0082 0.0074 

n 0.71 0.0099 0.0211 0.40 0.0075 0.0139 

o 0.13 0.0094 0.0170 0.08 0.0033 0.0114 

ALL 0.74 0.0177 0.0129 0.45 0.0107 0.0085 

"Each theoretical time-domain dataset is an 8 x 8 complex array of data points (N = (2 x 8) 2 = 256) consisting of 15 

sinusoids (a o) computed using the corresponding frequency and amplitude parameters listed in Table 3. Random noise 
with a standard deviation of unity was added to each data point prior to Bayesian analysis. The eight datasets are thus 
identical with respect to their systematic components and differ only in their random (noise) components. The frequen- 

cies o~ and oh are displayed in the Nyquist interval -1 -< f -< 1 representing the angular frequency range - n  -< o <- n. 
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Fig. 2. Contour plots of the real frequency-domain spectrum of a noise-free (black contours) and a truncated, noise-added 
(red contours) version of the dataset defined by Table 3. The systematic portion of the dataset consisted of 15 sinusoids 
(a o) with an amplitude range of 2-8. The noise-added dataset (8 x 8 complex points) was processed in three different 
ways prior to Fourier transformation: (A) Prior to Fourier transformation, each dimension was digitally filtered by a 
cosine-squared bell apodization function followed by zero-filling from 8 to 128 complex points. After Fourier transforma- 
tion, the imaginary portion of the spectrum along each dimension was discarded; (B) Time domain t2 was Fourier 
transformed. Mirror-image linear prediction was used to extend the length of the FID along t~ from 8 to 15 complex 
points. Time domain t~ was then digitally filtered with a cosine-squared bell apodization function and zero-filled from 15 
to 128 complex points prior to Fourier transformation. After Fourier transformation, the imaginary portion of 0~ was 
discarded. Frequency domain to2 was then inverse Fourier transformed and processed in the same manner as h; (C) The 
best estimates of the number, amplitude, frequency and phases of all detectable signals in the data were obtained by using 
the algorithm described in the text. The model derived from this Bayesian analysis was used to perform a 2D extrapolation 
of the (t~,t2) 8 x 8 complex dataset to a 64 x 64 complex array. Each dimension was then digitally filtered with a cosine- 
squared bell apodization function and zero-filled from 64 to 128 complex points prior to Fourier transformation. After 
Fourier transformation, the imaginary portion of the spectrum along each dimension was discarded. 
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HN(CO)CAHA experiment (Kay et al., 1992) performed upon uniformly 15N-~3C-labeled protein 
subunit c (DDT binding protein, 8 kDa) from E. coli. Although subunit c is a relatively small 
protein, it consists of predominantly a-helical regions and thus exhibits poor chemical-shift 
dispersion in both the backbone and side-chain NMR  resonances. The dataset was collected on 
a Bruker 500 MHz spectrometer with a frequency resolution of (256 • 16 • 8 x 8) complex points 
in the amide proton (acquisition, t4) , nitrogen (tO, or-proton (t2) and t~-carbon (t3) dimensions, 
respectively. The H a and C a (t2,t3) dimensions were acquired by using shared constant-time 
acquisition periods (Kay et al., 1992). 

The acquisition dimension t 4 w a s  processed using conventional apodization, zero-padding and 
Fourier transformation, followed by discarding of the imaginary portion of the frequency- 
domain data. The nitrogen tl dimension was then extrapolated from 16 to 24 complex points by 
linear prediction after Fourier transformation of the t2 and t 3 dimensions. After apodization with 
a cosine-squared bell filter function, zero-filling to 64 complex points, Fourier transformation 
and discarding of the imaginary data points along the o)~ dimension, the o)2 and o)3 dimensions 
were inverse Fourier transformed. The result of this series of operations was a 4D matrix consist- 
ing of 256 (COn) • 64 (c~ = 16 384 planes of data, each containing 8 • 8 complex points along 
dimensions t2 and t 3 ( H  a and C a, respectively). 

Each of the 256 • 64 (t2,t3) 2D FIDs was extrapolated from 8 • 8 to 32 • 32 complex points 
using multidimensional Bayesian analysis. The total processing time required to analyse the 
16 384 planes was 23.1 h on a Silicon Graphics Indigo workstation. After extrapolation by 
Bayesian analysis, each of the (t2,t3) planes was apodized, zero-filled to 64 complex points and 
Fourier transformed. A single plane from the 4D dataset occurring at [o)4 = 6.32 ppm, o)~ = 120.6 
ppm] was processed according to the three different methods (A, B and C) as described above, 
and the results are shown in Figs. 3A-C. 

CONCLUSIONS 

Bayesian probability theory applied to the analysis of stationary, multidimensional NMR data 
is a practical technique for extrapolating D-dimensional constant-time data prior to apodization, 
zero-filling and Fourier transformation. Bayesian analysis of constant-time data can resolve 
frequencies that conventional processing techniques and 1D mirror-image linear prediction can- 
not. Although a portion of the analysis requires a nonlinear optimization step, the optimized 
parameters interact only weakly with each other (partially orthogonal), and the initial values of 
the parameters are close to their optimal values, thus allowing stable and rapid convergence of the 
algorithm. Future work will be directed toward the addition of decay rates to the Bayesian 
models. This development would remove the constant-time constraint and allow simultaneous 
Bayesian analysis of all indirectly detected dimensions of any NMR experiment that can be 
modeled by the sum of simple D-dimensional decaying sinusoids. In the near future, however, 
computational limitations probably will prohibit simultaneous modeling of all dimensions in 
multidimensional NMR experiments of medium-sized and large proteins. The vast number of 
signals present in an entire dataset is too large to model according to the strategy outlined here. 
New approximations and a different approach will be required to reduce the size of the interac- 
tion matrices and the number of required Fourier transforms. If these barriers can be surmount- 
ed, complete estimation of frequencies, amplitudes, phases and decay rates of multidimensional 
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Fig. 3. Contour plots of the Fourier-transformed spectra (real portion) of the 2D H~C ~ (co~,0~3) plane at [co4 (H) = 6.32 
ppm, c% (N) = 120.59 ppm] from the 4D HN(CO)C"H ~ experiment performed upon the ~ 5N-13C uniformly labeled protein 
subunit c (DDT binding protein) from E. coli. The t~ and h (acquisition) dimensions were processed according to 
conventional methods described in the text. The 2D H~C ~ (t2,t3) plane defined by [co4 (H) = 6.32 ppm, oJ1 (N) = 120.59 
ppm] was then copied from the 4D matrix and processed according to three different methods: (A) Prior to Fourier 
transformation, each dimension was digitally filtered by a cosine-squared bell apodization function followed by zero- 
filling from 8 to 64 complex points. (B) Time dimension t2 was Fourier transformed. Mirror-image linear prediction was 
used to extend the length of the FID along t 3 from 8 to 15 complex points. Time dimension t 3 w a s  then digitally filtered 
with a cosine-squared bell apodization function and zero-filled from 15 to 64 complex points prior to Fourier transforma- 
tion. Frequency dimension oh was then inverse Fourier transformed and processed in the same manner as h. (C) The best 
estimates of the number, amplitude, frequency and phases of all detectable signals in the data were obtained by using the 
algorithm described in the text. The model derived from this Bayesian analysis was used to perform a 2D extrapolation of 
the (tz,h) 8 • 8 complex dataset to a 32 • 32 complex array. Each dimension (t2,t3) was then digitally filtered with a 
cosine-squared bell apodization function and zero-filled from 32 to 64 complex points prior to Fourier transformation. 
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N M R  data could be accomplished by Bayesian analysis with greater accuracy than by conven- 
tional processing techniques. In addition, the direct extraction of  relevant N M R  parameters from 
the data and the inherent ability of  Bayesian analysis to perform signal recognition would facili- 
tate automated approaches to the process of resonance assignment. 
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APPENDIX 

m 

Nonl inear  max imi za t ion  o f  h 2 

For a D-dimensional dataset Y modeled by a fixed number of sinusoids (J), h 2 is dependent 
upon the nonlinear parameters that comprise the basis functions. If  the time-domain data are 
stationary, then the nonlinear parameters for a D-dimensional model containing J sinusoids are 
the set of frequencies ([(l)ll,O)12 . . . . .  (,01D], [(021,0)22 . . . . .  O)2D ] . . . . .  [(,l)jl,O)j2 . . . . .  (I)jD]). T h e  quantity h2max 
is thus obtained from an optimization of  the nonlinear parameters ([o311 .... o312 ..... o3~D], 
[o32,,o322 . . . . .  o32D] . . . . .  [o3~1,o3J2 . . . . .  o3 ,o1) .  
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The requirements for the nonlinear optimization are not rigorous. The parameters are nearly 
orthogonal, and the initial values of  the parameters are close to their optimal values. The nonlin- 
ear optimization is performed as a series of  iterations. For each iteration, an increment AC0jd is 
defined for each parameter o~d, the frequency of  thej th sinusoid along dimension d. The value of  
AO~jd is set to n-~, where nd is the number of  data points sampled along dimension d. The value of  
h 2 is calculated from the interaction matrix G (Eqs. 17-19) at three different points (coj~ - Ao~jd, 
C0jd, and c0jd + At0jd) corresponding to (h2., h22, and h23), respectively. A new value for o)jd is 
computed according to 

~jd = 

%d--3~(Ojd' h21 > h22, h23 

F ]. Amid ~2,~21+4@2+2,@7, 3 h22> h2,, h23 

3 2 ~ ooja + ~Amjd, h 3 > h-2, h21 

(A1) 

The middle term of Eq. A1 is_a parabolic interpolation of coja from the magnitude of Atoja and 
the relative values h21, hZ2, and h23. If  the middle condition h2~ > h21, h23 is met, then the search for 
coja is complete and cojd is replaced with its interpolated value. If  either the first or third condition 
is true, 0~jd is set to (Ojd -- ] Aojd) or (C0jd + ] At%), respectively, and the search for an optimum 
value of  o)ja will continue during the following iterations. The algorithm is complete when every 
nonlinear parameter C0jd has met the second condition of Eq. A1. 

Orthogonal approximation 
For a D-dimensional model containing J sinusoids, there are JD frequency parameters and 

M = JK (K = 2 D) basis functions. If  all frequency parameters were optimized for a D = 2 model 
the mterachon matrix would be containing J = 15 sinusoids (M = 15(22) = 60), the size of " ~" ' " 

60 x 60. For such large numbers of  parameters and basis functions, the time required to calculate 
G and its eigenvectors and eigenvalues would be prohibitive. In practice, the orthogonality of  the 
basis functions can be used to limit the number of frequencies and basis functions requiring 
optimization. 

The orthogonality between two basis functions Vl and Vm can be quantified according to a 
parameter (3;lm given by 

2glm 
(~Im = (gn + glm) (A2) 

where glm is defined according to Eq. 20. I f o ~  = 0, then Vl and Vm are completely orthogonal and 
the nonlinear parameters associated with each function can be optimized independently. In a 
model fj containing j = 1... J sinusoids, each sinusoid Sj is associated with K basis functions 
[V(j-1)k + 1 . . . . .  VjK ]. A maximum interaction ~jk can be defined between two sinusoids, Sj and Sk, 
which represents the maximum of the K z interactions between each of  their associated basis 

~k ------ 

jK kK J 

U US m 
[= l~  ~ max 

functions. 

l~  - 1 )K+ 1, m ~  (k - 1 )K+ 1 (A3) 
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In the BAMBAM algorithm, two sinusoids Sj and Sk are considered to be orthogonal to one 
another if ~jk < 0.025. 

This orthogonality property allows BAMBAM to reduce the number of nonlinear parameters 
requiring optimization. For a given model containing J sinusoids Sj = S I , S  2 . . . .  Sj ,  all of the 
sinusoids that are orthogonal to a particular sinusoid, Sj, are eliminated from optimization of  Sj. 
All of  the nonlinear parameters associated with Sj are then simultaneously optimized on the 
nonorthogonal set of  sinusoids. This is done for all J sinusoids until the middle condition of  Eq. 
A 1 is met on the first iteration for all JD frequency parameters. 


